ULTRASONIC DISTANCE SENSORS MANUAL PROGRAMMING THE P42 SENSOR SERIES | | PAGE | |--|----------| | Introduction | | | How to use this manual | 3 | | PROGRAMMING OF SENSORS WITH RS232 INTERFACE | 4 | | Structure of Memory Organisation | 4 | | Hardware set-up | 5 | | Programming Adapter | 6 | | RS 232 - RS 485 Converter | 8 | | Structure of Commands | 9 | | Commands | 10 | | Software | 23 | | Software Tools | 25 | | PROGRAMMING OF SENSORS | 28 | | P42-M3A-2D-1G1-300E / -220S /-180E / -130E | 28 | | Listings | 29 | | Function switches | 30 | | Set point adjustment | 31 | | Technical data | 31 | | Wiring | 32 | | Sensor heads | 33 | | Programming the P42-M3A-2D-1G1-XXXX sensor series | 35 | | List of commands | 35 | | Geometry | 38 | | Examples | 39 | | P42-A4N-2D-1C1-300E /-220S /-130E | 42 | | P42-A4N-2D-1D1-220S /-130E | | | P42-A4N-2D-1E1-220S /-130E | 43 | | Listings
Technical data | 43
44 | | Wiring | 44 | | Programming the P42-A4N-2D-1C/D/E/F-XXXX sensor series | 46 | | List of commands | 46 | | Geometry | 50 | | Examples | 51 | | | | | INDEX | 54 | | CROSS - REFERENCE LIST | 61 | ## INTRODUCTION ## HOW TO USE THIS MANUAL This manual should help the user to program sensors of series P42 # Basics are described in chapter **Programming of Sensors with RS232 Interface** This chapter contains a general overview of structure of memory in the P42 series, hardware set-up, structure of commands, special registers and a description of the very important software tools **UDSE.EXE** and **SENDE.EXE** Software **UDSDEMO.EXE** In the chapter **Programming of the Sensors** the specific characteristics of each sensor is listed. The programmer should start directly with the sensor he wants to program. The rubric **Programming** lists all commands available. **Examples** shows specific applications and their realisation. # PROGRAMMING OF SENSORS WITH RS232 INTERFACE ## STRUCTURE OF MEMORY ORGANISATION The memory organisation of the P42 series is shown in the following sketch: The **RAM** could get information from different sources: #### 1. EEPROM By connecting the power supply to the sensor, the data from the EEPROM will be loaded into the RAM #### 2. **ROM** With a special command the factory setting is shifted from the ROM into the RAM. #### 3. RS 232 Via the RS 232 interface the user has direct access to the RAM. #### 4. Front Panel The front panel of the P42-M0A... and P42-B0A... enables the change of some settings in the RAM. From the **RAM** information can be communicated to: #### 1. **EEPROM** The actual setting can be stored. #### 2. **RS 232** Via RS 232 the actual distance information or status information can be communicated to the PC. #### 3. Font Panel The front LEDs of the front panel can be driven directly. ## HARDWARE SET-UP The most effective way to change settings of the sensor is the programming with a PC via the RS 232 interface. For this use - baud rate of PC has to be set to 9600 baud, no parity, 8 bit 2 stop bits. * - the sensor should be run in the 'hold' mode (connection of the HLD-input with GND), to avoid data collisions on the interface. - the connection SENSOR PC has to be done the following way: ^{*}Programs UDSE.EXE; SENDE.EXE or UDSDEMO.EXE are setting the interface COM1 or COM2 in the needed mode. | S | ensor | | | | | PC | | | |---|---------|-------|-------|-----------|----------|----------|----------|-----------| | В | 0B | B0A | M3A | A4M-1C/D. | Function | Function | | | | S | ubMinD9 | Screw | Screw | PIN | | | SubMinD9 | SubMinD25 | | | 3 | 12 | 20 | 5 | TXD | RXD | 2 | 3 | | | 2 | 11 | 22 | 6 | RxD | TxD | 3 | 2 | | | 5 | 10 | 21 | 3 | GND | GND | 5 | 7 | The connection of pins (DTR-DSR-CTS) of the PC connector is necessary for programs using the MS-DOS Int 14h (for example DOS, BASIC, GWBASIC,...). With some PC's the level of the TxD signal is too small. This can be shifted with the sketched circuit. Pin connection from outside PC. #### PROGRAMMING ADAPTER A very useful tool for the programming of the compact P42-A4N-... series is the **PROGRAMMING ADAPTER** ### Listing: ## P55000005-002 It can be mounted directly to an installed sensor. The sensor has to be disconnected and between the two connectors the programming module can be inserted. This programming module has a SubMinD9 connector, identical with most laptop COM interfaces. With a standard RS232 cable the connection between programming module and PC can be done. It also has two LEDs indicating the status of the switching outputs and switch to set the sensor in the hold mode. #### Advantages: - Easy access with a laptop to the RS 232 lines. - Programming can be done in close proximity to the sensor. - TxD-, RxD- and HLD/Sync lines do not need to be installed. - Status of set points can be surveyed. - No limitation in cable length. (Length of RS 232 cable should be limited to 2 m) The following drawings show the adapter and its electrical circuit. ## PROGRAMMING OF SENSORS WITH RS232 INTERFACE Electrical circuit programming module # RS 232 - RS 485 CONVERTER Some sensors the P42-A4N-2D-1E/F.... series are equipped with a RS 485 interface. Programming is exactly the same as with RS 232 interface. A RS 232 - RS 485 converter is available. This small device can be mounted on a DIN rail and enables the communication with all RS485 sensors. # P55000003-002 512377 ## STRUCTURE OF COMMANDS The sensors can be adjusted to its special application with a set of commands, transmitted via the RS 232 (RS 485) interface. Special commands exist for setting of following parameters: Set points of switching outputs, Hysteresis, Characteristics of switching outputs (NO or NC), Analogue output range, Offset of analogue output, Under range (Dead zone), Over range counter, Cycle time, Transmission time of ultrasonic pulse, Adjustment of sensor offset, Fail pulse suppression, Setting of MODE register This list might vary, depending on sensor type. The actual settings can be: Stored into the EEPROM, Display on the screen or Copied into a file in the PC Each command has the same structure: @abp<CR> with: - @ Start of command, always identical - a Address of the sensor, in addition every sensor responds to the address '#' - b Command <CR> - End of command <CR> = ENTER = #13 After receiving the 'End of command' <CR> the sensor change it's operation. #### **COMMANDS** In this chapter a description of the most important commands is listed. A detailed list of commands for each sensor with a description of their functions can be found in the chapter describing the special sensor series. # WRITE FACTORY SETTING INTO RAM @aI<CR> The initial factory setting will be written from the ROM into the RAM. If the sensor was programmed incorrectly and doesn't operate the way it should; by using this command the sensor can be restored to ist original Factory Setting. # WRITE ACTUAL SETTING INTO EEPROM @aW<CR> The actual sensor settings can be written into the EEPROM, so, when the power supply of the sensor is switched off and on again the settings from the EEPROM will be loaded into the RAM. # READ OUT SENSOR SETTINGS @aD<CR> The command @aD<CR> will cause the sensor to send 8 (9) words of the actual setting via the RS 232 (RS 485) interface. This information contains: MODE register, Set points of switching outputs, Hysteresis, Analogue output range, Offset of analogue output, Under range (Dead zone), Over range counter, Cycle time, Transmission time of ultrasonic pulse, Adjustment of sensor offset, Fail pulse suppression The information is in HEX format. As one word contains 8 bit, some of the words are divided into 2 parts with 4 bits, containing different information. The specific list for each sensor you will find in the chapter describing the special sensor series. ## CHANGE SENSOR ADDRESS # @aAp<CR> This command changes address from 'a' to ASCI value of p: ASC(p). For example @aA98<CR> renames sensor address from a to b (ASC(98)=b). All sensors have in addition the address'#'. This is important, if the sensor address is unknown. Following addresses can be used: #### ASCII table: | Dec. | Chr. | |------|------|------|------|------|------|------|------|------|------| | 97 | a | 107 | k | 117 | u | 127 | • | 137 | ë | | 98 | b | 108 | 1 | 118 | V | 128 | Ç | 138 | è | | 99 | c | 109 | m | 119 | W | 129 | ü | 139 | ï | | 100 | d | 110 | n | 120 | X | 130 | é | 140 | î | | 101 | e | 111 | О | 121 | y | 131 | â | 141 | ì | | 102 | f | 112 | p | 122 | Z | 132 | ä | 142 | Ä | | 103 | g | 113 | q | 123 | { | 133 | à | 143 | Å | | 104 | h | 114 | r | 124 | | 134 | å | 144 | É | | 105 | i | 115 | S | 125 | } | 135 | ç | | | | 106 | j | 116 | t | 126 | ~ | 136 | ê | | | ### CYCLE TIME ADJUSTMENT @aCp $$<$$ CR $>$ p = 64; 32; 16; 8; 4 msec Measurement principle of the distance measurement is shown in the following drawing. The sensor (grey) is transmitting an ultrasonic pulse along the dotted line to the target. At the target surface it will be deflected back to the sensor where it will be received. In the diagram the position of the pulse versus time is shown. Starting from the sensor face to the target, back to the sensor and once more reflected in the direction to the target. The end of this line indicates that the intensity of the ultrasonic pulse is so small that it cannot be detected anymore. Now the next measurement can be taken and a new ultrasonic pulse can be transmitted. The time between transmissions of the pulses is called the cycle time T_{cycle} . Cycle time determines the response time of the sensor. Obviously sensors used for long distance measurement also have long response times. With the programming of the cycle time the response time of the sensor can be adjusted to the application. # Cycle time must always be longer than the time needed to absorb the transmitted ultrasonic pulse! The time of flight of the pulse (Sensor-Target-Sensor): $T_{measure}$ is proportional to the distance of the
object. This time is measured and transformed in the corresponding distance. In the following table a maximum distance for given cycle times is proposed: | Command | Cycle time ms | Distance m | |-----------------|---------------|------------| | @aC4 <cr></cr> | 4 | 0.3 | | @aC8 <cr></cr> | 8 | 0.7 | | @aC16 <cr></cr> | 16 | 2.5 | | @aC32 <cr></cr> | 32 | 4.5 | | @aC64 <cr></cr> | 64 | 10. | For more information see also: MEASUREMENT WINDOW # Under Range Adjustment @aUp<CR> 0≤p≤255 cm During transmission ultrasonic transducers cannot receive ultrasonic pulses. Each sensor has it's own characteristic zone in front of it, where objects cannot be detected. This zone is called '**DEAD ZONE**'. With this command this zone can be enlarged. Parameter p - length of the zone - starts at the sensor face. Echoes in this zone will be ignored. Disturbing objects in front of the sensors can be ignored, choosing the right setting for the under range. See sketch. A sensor can detect targets for example through a protecting grid without being disturbed by the reflection of this grid. #### Example 1: SMALL OBJECT Under range and offset of the analogue range of a sensor are identical. Analogue output 0 to 10 V has positive slope. A small target is moved towards the sensor head. In the diagram the output is shown decreasing to 0V at the start of the under range and remains at 0 until point X where it jumps to 10V. Following table shows distance X depending on the value of the under range adjustment: | Command | p | X cm | |------------------|-----|------| | @aU20 <cr></cr> | 20 | 14 | | @aU30 <cr></cr> | 30 | 22 | | @aU40 <cr></cr> | 40 | 32 | | @aU50 <cr></cr> | 50 | 42 | | @aU100 <cr></cr> | 100 | 85 | | @aU200 <cr></cr> | 200 | 178 | #### **Limitations:** - Minimum under range is determined by the transducer ringing. p=0 has no effect. - Echoes of a massive target in the dead zone will be suppressed, but 2nd or 3rd echoes can be received if their time of flight is longer than the programmed dead zone. Output will then display a distance corresponding 2 or 3 times of the real one. Example 2: LARGE OBJECT Offset of the analogue range of a sensor = 0, analogue output 0 to 10 V has positive slope. A large target is moved from far to the sensor head. In the drawing the output is shown. It is decreasing until the start of the under range, where it drops to 0 V and remains at 0 V until point X it then jumps back up (It may than jump to undefined values caused by double echoes). SET POINT ADJUSTMENT **SET POINT 1** **@a1p<CR>** 0≤p≤10000 mm SET POINT 2 **@a2p<CR>** 0≤p≤10000 mm Defines the status of the switching PNP outputs depending of the distance of the target and whether it is set to NO or NC characteristics. See also Hysteresis, Switching Window NO: Distances higher than selected set point, the output is high resistant. Distances lower, equal selected set point, the output is low resistant, current flow up to 100 mA. NC: Distances higher than selected set point, the output is low resistant, current flow up to 100 mA. Distances lower, equal selected set point, the output is high resistant. #### HYSTERESIS SET POINT 1 **@aHp<CR>** 0≤p≤255 mm HYSTERSIS SET POINT 2 **@aGp<CR>** 0≤p≤255 mm To avoid a flickering of the switching output if the measured distance corresponds exactly to the set point a hysteresis can be programmed. See also Switching Window. Example for NO output characteristic: If an object is approaching the sensor from large distance, output will change at distance = set point. If the object now returns, the change of the output will be at the distance = set point+hysteresis. #### SWITCHING WINDOW Some of the sensors can be driven in the mode 'Switching Window'. This can be selected by setting the corresponding bit. In this mode the sensor is switching if the target is in the range between set point and set point+hysteresis. Example for NO output characteristic: ## **ANALOGUE OUTPUT** The analogue output is set with two commands #### OFFSET AND RANGE ### OFFSET OF THE ANALOGUE OUTPUT **@aOp<CR>** 0≤p≤255 cm; 0≤p≤10000 mm Offset of the analogue output is the distance from the sensor head to the beginning of the analogue output range. The parameter p defines the distance in cm or mm. # RANGE OF THE ANALOGUE OUTPUT @aSp<CR> $0 \le p \le 255$ cm; $0 \le p \le 10000$ mm Analogue output range is the range where the analogue output is changing between 0 to 10 V or 4 to 20 mA. The parameter p defines the length of the range in cm or mm. #### MODE REGISTER # @aMp<CR> Sensor characteristics can be programmed by setting bits in the **MODE** register for adjustment of the following functions: Enable/disable input via front panel Enable/disable serial asynchronous data output Positive/negative slope of analogue output Output with/without mean value routine NO/NC characteristics of switching outputs Switching window characteristic of switching output HEX/BCD digital output of the serial interface Determination the value of the parameter 'p' for programming the Mode register. This register is an 8 bit word. Each bit has a special function. It can be selected dependent of it's value 0 or 1. #### PROGRAMMING OF SENSORS WITH RS232 INTERFACE Here MSB stands for Most Significant Bit value: 128 and LSB for the Lowest Significant Bit value: 1. #### Example: The Mode register of the P42-A4N-2D-1C1-XXX allows following settings: Selecting the following settings the value of the Mode register parameter is the sum of all values: The command for the setting is: @#M147<CR> For each sensor series a special MODE register exists. You will find it in detail in the chapter: Programming of Sensors. ## OFFSET ADJUSTMENT OF SENSOR # @**aXp<CR>** $1 \le p \le 255 \text{ mm}$ There can be a difference between distance output of the sensor and the real distance. The position of the distance 0 of the output and the location of the sensor face can differ. The position of the 0 can be adjusted with the sensor head offset adjustment. 0 is for positive offset shift, when the 0 of the distance output is in front of the sensor face. <math>126 is for negative offset shift, when the 0 of the distance output is behind the sensor face in the sensor. Example for negative offset: Offset -30 mm, the sensor output differs 30 mm. Output shows a value 30 mm too far. Parameter p for negative values has to be calculated the following way: $$p = -30 + 256 = 226$$ The offset can be adjusted with @aX226<CR> ### **OVER RANGE COUNTER** @**aRp** $$<$$ **CR** $>$ 1 \leq p \leq 255 If the sensor has to measure the distance to a small target which is difficult to detect, it might happen that the sensor outputs will be very unstable. They will flicker between the actual distance and over range. Controlling a process with these outputs might result in a catastrophe. These abrupt changes can be suppressed with the **over range counter**. It's operation is shown in the flow chart: At the begining of the measurement cycle, sensor is transmitting an ultrasonic pulse. If an echo is received, the over range counter ORC will be set to 0, and the new measured distance calculated, if necessary the outputs changed and then the next ultrasonic pulse transmitted. If no echo is received, the over range counter ORC will be increased. If ORC below the parameter p no changes in the output will be made, the sensor will transmit a pulse during the next measurement cycle. If ORC is equal or higher than p, outputs will be changed to over range and the sensor will transmit a pulse during the next measurement cycle. #### Example: A sensor with the following setting: @aC64<CR> @aR200<CR> If suddenly the target disappears, the sensor needs 200*64 ms = 12.8 s until it's outputs change to over range. #### FAIL PULSE SUPPRESSION Sensor electronics are well protected against electromagnetic disturbances of the environment. In addition the microprocessor is used in a very effective way to filter the right signal out of noisy environment. In this chapter the interested reader will be informed about the mechanism how fail pulse suppression by software is realised. Factory settings are optimised to fulfil most of the measurement tasks. But sometimes in very special applications these information can be helpful to understand the behaviour of the sensor and to adapt it the best way. With the **Mean Value Bit** in the **Mode Register** the software filtering and fail echo suppression is activated. Around the actual measured distance a window is created with the size of normally \pm 32 mm. This window is called **Measurement Window**. (For adjustment of this measurement window see the special point Measurement Window.) If the next measurement / new value is within this measurement window it will be used to calculate the new distance which will then be displayed. Around this actual distance a new measurement window is placed. Two counters one 'A' for the lock-out of the actual distance and the other 'B' for the lock-in are set to 0. If the next measurement / new value is outside this measurement window this measurement will be ignored and the distance output will be unchanged. The counter counting the number of measurements outside which are not in the measurement window is increased from 0 to 1. If the **Lock Out Counter** A is below 3 (programmable) the program jumps back to the start and a new measurement is made. If it is higher or equal 3 the **Lock In Counter** B is increased. If B = 1, the measured value is assumed to be the new distance and a new measurement window is created. The program jumps back to the start and a new measurement is made. If B > 1 and the new measurement is outside the new measurement window, B is set to 1 and the program jumps back to the start and a new measurement is made. If B = 4 (programmable) the new measurement now is realised as the new distance. Output is now changed and the lock out and lock in counters are set to 0. The program jumps back to the start and a new measurement
is made. A and B = 0Start New value Within range of old measurement window Yes No Calculation of new distance =A+1change outputs A and B = 0 $A \ge 3$? No B = B+1No Yes New value in 'possible' New value measurement is centre of 'possible' window? measurement window Yes No New value is centre of 'possible' Yes B = 4? No measurement window New value = B = 1new distance The following diagram shows the different steps of the program. # LOCK OUT / LOCK IN COUNTER ADJUSTMENT $$@aTp < CR > 1 \le p \le 255$$ $@aTp < CR > @aEp < CR > 1 \le p \le 255*$ The values for counters A and B as described above can be set with the command T. Parameter p corresponds to a 8 bit, where the above 4 bits are used for the Lock In Counter B and the lower 4 bits are for the Lock Out counter A. @aT67<CR> sets the Lock In Counter B to 4 and Lock Out Counter A to 3; HEX 43 corresponds to DEC 67. See BCD-HEX conversion list. change outputs A and B = 0 ^{*} In series P42-M0A-2D-1G1-xxxx the Lock-out and Lock-in counter are programmed separately with the commands: ## MEASUREMENT WINDOW Operating the sensor with the mean value routine - the bit 'OUTPUT WITH MEAN VALUE' is set in the mode register- a window is created around the actual measured distance. Measured distance values which are in this window will be taken into account for the calculation of the new distance. This new distance is then the new centre of the measurement window. The window is moving with the target movement. The maximum speed of the window movement limits the speed of a target which should be detected. If the target moves faster, distance measurements will be ignored by the fail pulse suppression algorithm. The maximum speed depends on the cycle time and on the size of the used measuring window. With the command of cycle time adjustment it is also possible to adjust the measurement window. Normal size of this measurement window is \pm 32 mm. # Cycle Time and Measurement Window Adjustment @aCp<CR> The command adjusting the cycle time can also be used for the Measurement Window adjustment. Following table is showing for different values of P the CYCLE TIME, the size of the MEASUREMENT VALUE and the MAXIMUM SPEED of the MEASUREMENT WINDOW. | COMMAND | CYCLE TIME ms | WINDOW ± mm | MAX. SPEED OF WINDOW cm/s | |-----------------|---------------|-------------|---------------------------| | @aC0 <cr></cr> | 4 | 32 | 400 | | @aC1 <cr></cr> | 4 | 2 | 24 | | @aC2 <cr></cr> | 4 | 4 | 50 | | @aC3 <cr></cr> | 4 | 8 | 100 | | @aC4 <cr></cr> | 4 | 16 | 200 | | @aC5 <cr></cr> | 4 | 32 | 400 | | @aC6 <cr></cr> | 4 | 64 | 800 | | @aC7 <cr></cr> | 4 | 128 | 1600 | | @aC8 <cr></cr> | 8 | 32 | 200 | | @aC9 <cr></cr> | 8 | 2 | 12 | | @aC10 <cr></cr> | 8 | 4 | 25 | | @aC11 <cr></cr> | 8 | 8 | 50 | | @aC12 <cr></cr> | 8 | 16 | 100 | | @aC13 <cr></cr> | 8 | 32 | 200 | | @aC14 <cr></cr> | 8 | 64 | 400 | | @aC15 <cr></cr> | 8 | 128 | 800 | | COMMAN | ND | CYCLE ' | TIME ms | WIN | DOW ± m | ım | MAX | . Speei | O OF WI | NDOW cn | n/s | | |------------|----------|------------------|----------|----------|-----------|---------|--------|-----------|------------------|----------------------|-----------|--| | @aC16< | CR> | | 16 | | 32 | | | 100 |) | | | | | @aC17< | CR> | | 16 | | 2 | | | 6 | | | | | | @aC18< | CR> | | 16 | | 4 | | | 12 | • | | | | | @aC19< | CR> | | 16 | | 8 | | | 25 | | | | | | @aC20< | CR> | | 16 | | 16 | | | 50 |) | | | | | @aC21< | CR> | | 16 | | 32 | | | 100 |) | | | | | @aC22< | CR> | | 16 | | 64 | | | 200 |) | | | | | @aC23< | CR> | | 16 | | 128 | | | 400 |) | | | | | @aC32< | CR> | | 32 | | 32 | | | 50 |) | | | | | @aC33< | CR> | | 32 | | 2 | | | 3 | | | | | | @aC34< | CR> | | 32 | | 4 | | | 6 |) | | | | | @aC35< | CR> | | 32 | | 8 | | | 12 | • | | | | | @aC36< | CR> | | 32 | | 16 | | | 25 | | | | | | @aC37< | | | 32 | | 32 | | | 50 | | | | | | @aC38< | | | 32 | | 64 | | | 100 | | | | | | @aC39< | CR> | | 32 | | 128 | | | 200 | 1 | | | | | @aC64< | CR> | | 64 | | 32 | | | 25 | | | | | | @aC65< | | | 64 | | 2 | | | 2 | | | | | | @aC66< | | | 64 | | 4 | | | 3 | 3 | | | | | @aC67< | CR> | | 64 | | 8 6 | | | | | | | | | @aC68< | | | 64 | | 16 | | 12 | | | | | | | @aC69< | | | 64 | | 32 | | 25 | | | | | | | @aC70< | | | 64 | | 64 | | 50 | | | | | | | @aC71< | CR> | | 64 | | 128 | | 100 | | | | | | | BCD - | HEX | Conve | ERSION] | List | | | | | | | | | | | 0 | 1 | 2 | 3 | 4 | | 5 | 6 | 7 | 8 | 9 | | | 0 | 0 | 1 | 2 | 3 | 4 | | 5 | 6 | 7 | 8 | 9 | | | 10 | A | В | C | D | E | | F | 10 | 11 | 12 | 13 | | | 20 | 14 | 15 | 16 | 17 | 18 | | 9 | 1A | 1B | 1C | 1D | | | 30 | 1E | 1F | 20 | 21 | 22 | 2 | | 24 | 25
2F | 26 | 27 | | | 40 | 28 | 29 | 2A | 2B | 2C | 21 | | 2E | 2F | 30 | 31 | | | 50 | 32 | 33 | 34 | 35
2E | 36 | 3 | | 38 | 39 | 3A | 3B | | | 60 | 3C | 3D | 3E | 3F | 40 | 4 | | 42 | 43 | 44
4E | 45 | | | 70
80 | 46
50 | 47
51 | 48
52 | 49
52 | 4A | 4] | | 4C | 4D | 4E | 4F | | | 90 | 50 | 51
5B | 5C | 53
5D | 54
5E | 5
5 | | 56
60 | 57
61 | 58
62 | 59
63 | | | | 5A
64 | <i>5</i> Б
65 | 5C
66 | | 5E
68 | | г
9 | | | | | | | 100
110 | 6E | 63
6 F | 70 | 67
71 | 08
72 | | 9
3 | 6A
74 | 6B
75 | 6C
76 | 6D
77 | | | 120 | 6E
78 | 6 F
79 | 70
7A | 71
7B | 72
7C | 7
7] | | 74
7E | 75
7F | 76
80 | 81 | | | 130 | 78
82 | 79
83 | /A
84 | 85 | 7C
86 | 8 | | 7E
88 | 7 F
89 | 80
8A | 8B | | | 140 | 8C | 8D | 8E | 8F | 90 | 9 | | 92 | 93 | 94 | ов
95 | | | 150 | 96 | 97 | 98 | ог
99 | 90
9A | 9
9] | | 92
9C | 93
9D | 9 4
9E | 95
9F | | | 160 | 100 | 101 | 102 | 103 | 9A
104 | 10 | | 9C
106 | 9D
107 | 9E
108 | 9F
109 | | | For exam | | | | | | 10 | J | 100 | 107 | 100 | 107 | | | | | | - | | | | | | | | | | #### **SOFTWARE** Communication with the PC can be done either:- with the programs, we are distributing with our software tools shown in the next chapter or with your own GW-BASIC program. Two example of GW programs are shown: #### Example 1 This program shows the measured distances on the screen. 100 REM * DEMO1.BAS GW-BASIC Program * 110 REM *! Sensor is operating in continuous mode! * 120 REM * Distances are recorded in a string * 130 ON ERROR GOTO 200 140 OPEN "COM1:9600,N,8,2" AS #1 150 WHILE INKEY\$="" 160 IF NOT EOF(1) THEN LINE INPUT #1,C\$:PRINT C\$ **170 WEND** 180 CLOSE #1 190 END 200 IF ERR=57 THEN PRINT "Device Error": RESUME 150 210 IF ERR=69 THEN PRINT "Buffer Overflow":RESUME 150 **220 STOP** #### Example 2 With this program the actual sensor setting is displayed on the screen. This program is written for the P42-A4N-2D-1.1-.... series. ``` 10 REM STATUS.BAS 20 ON ERROR GOTO 350 30 DEF FNDEC(H$)=(ASC(LEFT$(H$,1))-48+(ASC(LEFT$(H$,1)) >58)*7)*16+ASC(RI GHT$(H$;1))-48+(ASC(RIGH T$(H$,1))>58)*7 40 CLS This program displays sensor settings ************ 60 PRINT, "******* 70 PRINT. "******** of a P42-A4N-2D-1.1-xxxx 90 REM OPEN "COM1:9600,N,8,2" AS #1 100 OPEN "COM1:9600,N,8,2" AS #1 110 PRINT #1,"@#D" 120 T=TIMER+.3 130 IF TIMER < T GOTO 130 140 LINE INPUT #1,D$ 150 PRINT 160 PRINT" Status of sensor: ":D$ 170 PRINT 180 PRINT" Function",,"Command",,"Parameter" 190 PRINT"-----","-----" 200 PRINT"Calibration slope ","@#Y",:PRINT USING"####"FNDEC(MID$(D$,2,2)) 210 PRINT"Calibration offset ","@#X",:PRINT USING"####"FNDEC(MID$(D$,4,2)) 220 PRINT"Mode register ","@#M",:PRINT USING"####"FNDEC(MID$(D$,7,2)) ","@#C",:PRINT USING"####"FIX(FNDEC(MID$(D$,9,2))/8)*8 230 PRINT"Cycle time ","@#U",:PRINT USING"####"FNDEC(MID$(D$,12,2)) 240 PRINT"Under range ","@#A",:PRINT USING"####"FNDEC(MID$(D$,14,2));:PRIN 250 PRINT"Addressode T'' => ";CHR\$(FNDEC(MID\$(D\$,14,2))) 260 PRINT"Fail echo suppression","@#T",:PRINT USING"####"FNDEC(MID$(D$,17,2)) 270 PRINT"Over range counter ","@#R",:PRINT USING"####"FNDEC(MID$(D$,19,2)) 280 PRINT"Analogue offset ","@#O",:PRINT USING"####"FNDEC(MID$(D$,22,2)) 290 PRINT"Analogue range ","@#S",:PRINT USING"####"FNDEC(MID$(D$,24,2)) 300 PRINT"Hysteresis 1 ","@#H",:PRINT USING"####"FNDEC(MID$(D$,27,2)) 310 PRINT"Hysteresis 2 ","@#G",:PRINT USING"####"FNDEC(MID$(D$,29,2)) 320 PRINT"Set point 1 ","@#1",:PRINT USING"####"FNDEC(MID$(D$,32,2))*256+ FNDEC(MID $(D$,34,2)) 330 PRINT"Set point 2 ","@#2",:PRINT USING"####"FNDEC(MID$(D$,37,2))*256+ FNDEC(MID $(D$.39.2)) 340 END 350 IF ERR=57 THEN RESUME 150 360 IF ERR=24 THEN PRINT "No sensor connected" 370 PRINT "Error"; ERR;" in Line "; ERL 380 STOP ``` ### **SOFTWARE TOOLS** (Stable up to Windows version WINXP, limited use with higher Windows versions Alternatively, terminal programs such as HTerm can be used.) #### **UDSDEMO.EXE** UDSDEMO (COMPORT) This program diplays the actual measured distance on the screen. Pressing the <SPACE> bar changes the size of the characters. Two programmes for supporting the programming of the sensors are available: UDS.EXE and SEND.EXE. #### **UDSE.EXE** UDSE (COMPORT) With this programme the sensor parameter can be set on-line. There is a direct access to the RAM of the sensor, so settings will change immediately. The adjustment can be done in an experimental way step by step. Using the parameter COM2 or 2; COM 2 of the PC will be used. If the parameter is missing, COM 1 will be used. All other adjustments of the interface - baud rate, parity etc. - will be done by this programme. On the first screen the programmable sensor can be selected by typing the corresponding number. Then the programming screen appears. The screen is divided in three windows: - input window, - output window and - a window with a **list of commands**.(See picture) Setting sensor into the 'HOLD' modus (connecting 'HLD' to GND) and pressing the space bar, a 4th window opens, displaying the **actual sensor settings** the sensor had at the moment the space bar was pressed. Whenever an update of these data is required, the space bar has to be pressed. In the **input window** the commands sent to the sensor are
displayed. If an error occurs during input please enter <CR> and repeat the correct command. In the **output window**, the actual distance to the target is shown. Example of the screen for programming the P42-M3A-2D-1G1-XXXX series: | ****** PIL So | | oH ULTRAS
I3A-2D-1G1 | SONIC DISTANCE SENSORS
-XXXX | ********** | |-----------------|----------|-------------------------|---|------------------| | *Command INPUT* | DESCRIPT | TION OF CO | OMMANDS: | | | | Comm | Func | tion | | | @#S220 | @#UY | Dead | l zone 0 <y<255 cm<="" in="" td=""><td></td></y<255> | | | @#U100 | @#OY | Anal | ogue Offset 0 <y<10000 in="" mm<="" td=""><td></td></y<10000> | | | | @#SY | Anal | ogue Range 0<=Y<<10000 in mm | | | *Distance OUT * | @#1Y | Set p | oint 1 0 <y<10000 in="" mm<="" td=""><td></td></y<10000> | | | 825 | @#2Y | Set p | oint 2 0 <y<10000 in="" mm<="" td=""><td></td></y<10000> | | | 825 | @#RY | Over | range counter 0 <y<255< td=""><td></td></y<255<> | | | 825 | @#CY | Cycle | e. Time Y=64 64ms; 32 32ms; 16 | 16ms; 4 4ms | | 825 | @#W | Setti | ng to EEPROM | | | 825 | @#I | Load | I factory setting (220S) into RAM | | | 825 | @#D | Disp | lay RAM Settings | | | 825 | @#M | Mode | e Register (8 bit word) | | | 825 | BIT | Val | Function (1) | Function (0) | | 825 | 7 | 128 | No Function | | | 825 | 6 | 64 | Ser.data out RS232 disabled | -enabled | | 825 | 5 | 32 | No Function | | | 825 | 4 | 16 | Negative Slope anal. out. | -positive | | 825 | 3 | 8 | Output without mean value | -with mean value | | 825 | 2 | 4 | Use for FM heads | -AM heads | | 825 | 1 | 2 | Switches set points in cm | -in mm | | 825 | 0 | 1 | Front panel disabled | -enabled | If the '>' button is pressed, the actual sensor setting will be written in a file named **STATUS.TXT** in the currently used directory. Sensor settings listed in this file can be transferred with the programme sende.exe into the sensor. ## SENDE.EXE # SENDE (FILENAME)(COMPORT) The easiest way of storing sensor settings is to write the commands in an ASCII file. This will be the best solution for applications, where many sensors have to be programmed with the same settings. The programme SENDE.EXE will adjust the interface - baud rate, parity etc. -, the transfer of all commands to into the sensor. Parameter 1 (FILENAME) has to be the name of the ASCII file containing the commands. Parameter 2 (Comport) can be used optionally for COM2. In this file **commands** have to be always in the begin of the line and start with '@'. One line for each command. Lines not beginning with '@' are treated as **comments**. Comments also can be added behind the command, separated by a 'TAB' or 'SPACE' sign. #### PROGRAMMING OF SENSORS WITH RS232 INTERFACE #### Example: ASCII file for adjustment P42- evaluation box to the P42-M0A-2D-1G1-300E File name: '300E.UDS' Programming evaluation unit to Type P42-M3A-2D-1G1-300E Sensor head: P42-A4M-2D-K300E @#I Load initial factory setting @#U10 Under range 10cm @#S1000 Analogue range 1000mm @#C16 Cycle time 16ms @#W Write setting into EEPROM This file will be transmitted to the sensor: SENDE 300E.UDS via COM1 or SENDE 300E.UDS COM2 and SENDE 300E.UDS 2 via COM2. # P42-M3A-2D-1G1-300E P42-M3A-2D-1G1-180E P42-M3A-2D-1G1-220S P42-M3A-2D-1G1-130E # P42-M3A-2D-1G1-300E P42-M3A-2D-1G1-180E P42-M3A-2D-1G1-220S P42-M3A-2D-1G1-130E - * PROGRAMMABLE - * ANALOGUE VOLTAGE AND CURRENT OUTPUT - * TWO ADJUSTABLE SWITCHING OUTPUTS - * SWITCHING OUTPUTS FOR OVER- AND UNDER-RANGE ## **Listings:** | 8 | | | | | | | |---|--|---|--|--|--|--| | P42-M3A-2D-1G1-300l | E including evaluation electronics P42-M0A-
sensor head P42-A4M-2D-K300E
connector P66195074-001 + 1m cable | | | | | | | P42-M3A-2D-1G1-2209 | S including evaluation electronics P42-M0A-
sensor head P42-A4M-2D-K220S
connector P66195074-001 + 1m cable | -2D-1G1-220S | | | | | | P42-M3A-2D-1G1-180 | including evaluation electronics P42-M0A-
sensor head P42-A4M-2D-K180E
connector P66195074-001 + 1m cable | -2D-1G1-180E | | | | | | P42-M3A-2D-1G1-130l | E including evaluation electronics P42-M0A-
sensor head P42-A4M-2D-K130E
connector P66195074-001 + 1m cable | -2D-1G1-130E | | | | | | P42-A4M-2D-K300E
P42-A4M-2D-K220S
P42-A4M-2D-K180E
P42-A4M-2D-K130E
P42-M0A-2D-1G1-130I | sensor head sealing IP67 100 to 900 mm
standard sensor head 150 to 1500 mm
sensor head sealing IP67 200 to 1500 mm
sensor head sealing IP67 300 to 3000 mm
E/180E-220S/300E evaluation electronics w | vith PNP-switching outputs | | | | | | 511741
513727
512287
513552
513705
512116
512383 | standard connector
connector IP67
mounting clamp internal diameter for M30
beam deflector 90°, flat
beam deflector 90°, focusing
beam deflector plastic
programming cable | P66195074-001
P66195075-001
P43178389-030
P43192871-001
P43192871-002
P66195116-001
P55195101-101 | | | | | ## **EVALUATION UNITS** These evaluation units can drive all P42 sensor heads. They have distance proportional voltage and current outputs, two fix and two adjustable switching outputs and a data output for a 4 digit digital display. Distance of a target is determined by the measuring time of flight of the ultrasonic pulse, temperature compensation and signal conditioning for suppressing of false echoes. Mean value routine can be used to achieve smooth analogue and stable switching outputs. Distance information via nibble serial output can either be used to drive the digital display or be used directly in any control unit. With 4 switches function of the sensor can be selected. Via the RS232 interface the sensor can be adjusted to the application. #### **Function switches** #### **Switch 1**: LIMITS*/SETPOINTS OFF Output is in the range of 0... 2000mm (programmable). Analogue output signal is in the range of 150 to 2000 mm. ON Adjustable output characteristics: - 1) Positive characteristic, when SP1<SP2. SP1 defines the zero point, SP2 the final value. - 2) Negative characteristic, when SP2<SP1. SP2 defines the distance for min. output (final value). #### Switch 2: HEX/BCD OFF Multiplexed data output BCD code. ON Multiplexed data output HEX code. ### Switch 3: SENSITIVITY LOW / HIGH OFF Receive sensitivity and beam angle are set to maximum. ON Receive sensitivity and beam angle are set to minimum. #### Switch 4: NC / NO OFF Switching outputs 1 and 2 are normally open, i.e. they conduct when set point 1 (SP1) or set point 2 (SP2) is fallen below. ON Switching outputs 1 and 2 are normally closed, i.e. inactive when set point 1 (SP1) or set point 2 (SP2) is fallen below. ### * Adjustment of analogue outputs with Function LIMITS (Switch 1 ON) #### Set point adjustment Two mutually independent set points can each be adjusted with 3 digital switches one 10^2 = hundreds switch, one 10^1 = tens switch and one 10^0 = units switch. Resolution is mm for evaluation units P42-M0A-2D-1G1-300E/220S/180E and cm for evaluation unit P42-M0A-2D-1G1-130E. #### Serial Interface RS 232 Serial Interface is fixed to data format 9600,N,8,2. Special software is not needed. Communication can be done with every terminal program. #### **Technical Data** **Specifications** at 25°C typically | <i>J</i> 1 | J | | | | | |------------|---------------------|--|---|---|--| | | -130E | 180E | 220S | 300E | | | | 3003000 | 2002000 | 1501500 | 100900 | | | | | ≤1 | | | | | Hz | 5to8/prog | 5to8/prog | 5to8/prog | 10to16/prog | | | | 8 | 8 | 10 | 8 | | | Iz | 130 | 180 | 220 | 300 | | | | 1 mm ,±0,2% min | | | | | | | $\pm 0.3\%$ or 2mm | | | | | | ısation | | 0 50°C | | | | | | 24V D | C - stabilised (| 1930V) | | | | | Hz
Hz
nsation | 3003000 Hz 5to8/prog 8 Hz 130 nsation | 3003000 2002000
≤1
Hz 5to8/prog 5to8/prog
8 8
Hz 130 180
1 mm ,±0,2%
± 0,3% or 2m
0 50°C | 3003000 2002000 1501500 ≤1 Hz 5to8/prog 5to8/prog 5to8/prog 8 10 Hz 130 180 220 1 mm ,±0,2% min ± 0,3% or 2mm | | #### **Switching outputs** PNP, 100mA, short circuit protected SP1, SP2 adjustable independently in steps of 1mm (P42-M0A-2D-1G1- 220S/180E/300E). Switching hysteresis is fixed to 1% of set point. Switching characteristic NO or NC can be selected. ORA No measurement can be made if the target is so distant from the sensor that the echo signal does not exceed the measuring threshold. URA Targets in this range are detected and signalled by the switching outputs. But as it is not possible to measure the position of a target under 150 mm(300 mm), no set point can be selected. Switching output URA (under range) conducts in this range. ## Hold/synchronising input Connection /HLD with GND stops operating sensor. Last calculated distance is stored at the output. To avoid mutual interference from several sensors, these are very simply synchronised by interconnecting the HLD inputs. All synchronised sensors transmit at the same time. #### Multiplex digital outputs BCD or HEX. 4-data bit and 4 decade-strobes NPN, open collector, 30V, 20mA, short circuit protected Time diagram of multiplex digital outputs see page 33. #### **Analogue outputs** U Voltage output 0 to 10V, $R_{lmin} = 1300R$ I Current output 4. to 20mA, $R_{lmax} = 250R$ ### P42-M3A-2D-1G1-XXXX ### **Environmental conditions**
Operating temperature 0... 50°C Storage temperature -25... +85°C Sealing IP 40 DIN-rail housing 100mm*75mm*110mm, 370g Housing **EMV** unit complies EMV test procedure according DIN EN 60947-5-2, Kategorie B, Schärfegrad 2. # Wiring | | T -1 -1 | E4* | |-----|---------------|-----------------------------------| | No. | Label. | Function | | | PW.S. | External Power supply | | 1 | 24V | 24V- supply voltage | | 2 | GND | 0V line | | | HEAD | Sensor head terminals | | 3 | 24V | Supply voltage | | 4 | GND | 0V line | | 5 | STA | Signal transmit command | | 6 | STO | Stop signal, echo received | | 7 | SEN | Receive sensitivity | | 8 | TEM | Temperature sensor | | | RM. CO. | Remote control | | 9 | GND | 0V- line | | 10 | HLD | Transmit inhibit, synchronisation | | | OUTPUT | Switching outputs | | 11 | GND | 0V-line | | 12 | ORA | Over range, no echo | | 13 | URA | Under range, target too close | | 14 | SP 1 | Switching output 1 | | 15 | SP 2 | Switching output 2 | | | ANALOG OUTPUT | Analogue outputs | | 16 | U | Voltage output 0 to 10V | | 17 | GND | 0V for voltage output | | 18 | I | Current output 4 to 20mA | | 19 | GND | 0V for current output | | | PRG | Asynchronous data line | | 20 | TxD | Data out | | 21 | GND | 0V for asynchronous data line | | 22 | RxD | Data in | | | DIGIT. OUTPUT | Multiplexed digital outputs | | 23 | 10^{3} | 1000 decade strobe | | 24 | 10^{2} | 100 decade strobe | | 25 | 10^{1} | 10 decade strobe | | 26 | 10^{0} | 1 decade strobe | | 27 | 2^{3} | 8 BCD/HEX | | 28 | 2^2 | 4 BCD/HEX | | 29 | 2^{1} | 2 BCD/HEX | | 30 | 2^0 | 1 BCD/HEX | # Time diagram of multiplex digital outputs Actual output value is 1438. # **SENSOR HEADS** $P42-A4M-2D-K130,\ P42-A4M-2D-K220S,\ P42-A4M-2D-K180E\ ,\ P42-A4M-2D-K300E$ # Listing | | Compatible with | |------------------|---------------------| | P42-A4M-2D-K130E | P42-M0A-2D-1G1-130E | | | P42-B0A/B-2D-1C/D1 | | P42-A4M-2D-K180E | P42-M0A-2D-1G1-180E | | | P42-B0A/B-2D-1C/D1 | | P42-A4M-2D-K220S | P42-M0A-2D-1G1-220S | | | P42-B0A/B-2D-1C/D1 | | P42-A4M-2D-K300E | P42-M0A-2D-1G1-300E | | | P42-B0A/B-2D-1C/D1 | ### **Technical Data** | | -130E | -180E | -220S | -300E | |--------------------------------|-----------------|-------|----------|-------| | Max. sensing distance (mm) | 3000 | 2000 | 1500 | 900 | | Min. sensing distance (mm) | 400 | 200 | 150 | 100 | | Beam angle(°) | 10 | 10 | 10 | 8 | | Carrier frequency (kHZ) | 130 | 220 | 180 | 300 | | Transmit/ receive mode | 1 | | | | | Adjustment sensitivity | 2 | | | | | Temperature signal | 3 | | | | | Measurement medium | Air | | | | | Temperature range (°C) | -15 to +70 | | | | | Storage temperature range (°C) | -15 to +80 | | | | | Sealing (IP) | 65 | | | | | Sensor face | Epoxy | Epoxy | Silicone | Epoxy | | Housing | Stainless steel | | | | ### 1 Transmit/receive mode key 1 In case of a positive pulse at the STA-line the sensor starts transmitting. The echo comes as low active pulse at the STO-line. ## 2 Adjustment sensitivity key The receive sensitivity can be adjusted at the SEN-Line either to high or reduced sensitivity. ## 3 Temperature signal key The temperature signal at TEM is voltage calibrated in Kelvin, slope 10 mV/K. at 20°C the temperature voltage is 2.93V. Possible detection of a large target ## PROGRAMMING THE P42-M3A-2D-1G1-XXXX SENSOR SERIES #### **Structure of Memory Organisation** #### **Programming instruction** Baud rate set to 9600, N, 8, 2 Each command has the same structure: @#Bp<CR> with: - @ Begin of command - # Address of the sensor (set fix to'#') - B Command always in capitals - p Parameter, always dec. number in ASCII format <CR> End of command <CR>=ENTER=#13 A file containing only ASCII signs can be copied with the DOS command 'COPY file.ext COM1' via the interface into the evaluation electronics. As the sensor needs time for interpretation, the file may contend only one command. Time needed between different commands is around 1 ms. A more simple way to program the sensor is the use of the programs **UDSE.EXE** or **SENDE.EXE** available as accessories. ### **List of Commands:** #### Load factory setting into RAM @#I<CR> The initial setting will be written from the RAM into the ROM. Factory settings added to the following commands are marked with a *. ## Write actual setting into the EEPROM @#W<CR> The actual setting will be written into the EEPROM. The content of the EEPROM will be loaded into the RAM after connecting power to the sensor. Adjustment of the **analogue output range** $@#\mathbf{Sp}<\mathbf{CR}> 0 \le p \le 10000 \text{ mm}$ $@#\mathbf{S}2000*$ Output range is the range were the analogue output is changing between 0 to 10V or 4 to 20mA. Offset of the analogue output @#Op<CR> $0 \le p \le 10000 \text{ mm}$ @#O0* Offset of the analogue sensor is the distance from the sensor head to the beginning of the analogue output range. #### P42-M3A-2D-1G1-XXXX Set point adjustments Set point 1@#1p<CR> $0 \le p \le 10000$ @#1500*Set point 2@#2p<CR> $0 \le p \le 10000$ @#21500* Parameter defines the set point in mm. Hysteresis is fixed to 10mm if set points are programmed, otherwise hysteresis is 1% of selected steeping. Under range adjustment @#**Up**<**CR**> 0≤p≤255 @#U15* Parameter p defines the dead zone of the sensor. Echoes from targets in this zone will be ignored. Cycle time adjustment @#Cp<CR> @#C32* With the cycle time also the max. detection range is determined. Following values could be selected: Command/ Cycle time/ max. range: @#C64<CR> 64ms 10m; @#C32<CR> 32ms 5m; @#C16<CR> 16ms 2.5m; @#C8<CR> 8ms 1m; @#C4<CR> 4ms 0.3m. With the 3 LSBits size of the widow for the mean value calculation is adjusted. (Size= $\pm 2^x$). Offset adjustment @#**Xp**<**CR**> 0≤p≤255 @#X238* depends on sensor There could be a difference between distance output and the real distance. 0 the offset is positive the 0 of the sensor is in front of the sensor face. <math>127 the offset is negative, the 0 of the sensor is behind the sensor face in the sensor. Negative offsets are adjusted the following way: Offset=-30 the sensor output is 30 mm too far <math>-30+256=226 = 26 (#X226 < CR > 26) Over range counter @#**Rp<CR>** 0<p<256 @#R30* Parameter p is the number of cycles where no echoes are received before the output of the sensor indicates the over range. Fail echo suppression counter (Lock out Counter) @#**Tp**<**CR**> 0≤p≤255 @#T4* Parameter p is the number of ignored echoes which are not in the expected window (see cycle time) window. **Good echo counter (Lock in counter)** @#**Ep<CR>** 0≤p≤255 @#E3* This value should only be changed in accordance to the factory. **Trigger** for single distance outputs #<CR> If the sensor is in 'Hold mode' it can be triggered with '#' to send the distance of the following measurement via the RS232 interface. Read out sensor setting @#D<CR> The status will be returned via RS232 from the sensor. Information of consist of 9 HEX words: \$0000 \$0025 \$0F04 \$031F \$0000 \$07D0 \$01F4 \$03E8 \$050A Corresponding commands: YX MC UT ER O S 1 2 Hyst1,2 #### P42-M3A-2D-1G1-XXXX **Mode Register** @#Mp<CR> $0 \le p \le 255$ @#M1* Value of parameter p is between 0 and 255. It is determined by combination of following bits. | Name. Bit | t Value | Function (1) | Function (0) | |-----------|---------|---------------------------------|------------------------| | 7 | 128 | | | | SAO 6 | 64 | Serial output disabled | Serial output enabled | | 5 | 3 2 | | | | INV 4 | 16 | Negative slope analogue outputs | Positive slope | | MWO 3 | 8 | Output without mean value | With mean value | | FM 2 | 4 | Use of FM-sensor heads | Use of AM-sensor heads | | CM 1 | 2 | Switch in cm | Switch in mm | | LOC 0 | 1 | Front panel disabled | Front panel enabled | INV- Bit only for the programmed output (O and S) which is active at Switch 1 position SET POINTS. ### **EXAMPLES** # Winding / unwinding control P42-M3A-2D-1G1-220S/180E Diameter measurement of thin material. Maximum coil diameter: 1.4 m. Core diameter of coil: 0.2 m Check if coil is in place. Switch off if coil diameter is bigger than 10% of max. coil diameter. Distance sensor - centre of coil: 1.1 m 0 V at minimum coil diameter 10 V at maximum coil diameter #### **Slope control** #### P42-M3A-2D-1G1-130E Stock of material before it enters pressing process. Maximum slope 1800 Minimum slope 300 Alarm if no slope; material might be stretched. Alarm if slope larger than maximum. Distance sensor - Slope = 2.2 m. #### **Setting:** @#M1<CR> @#12190<CR> Alarm ,,material might be stretched" SP1 has to be set to NC at front panel. Hysteresis is fix 10 mm as setpoints are programmed. @#2400<CR> Alarm slope too large. SP1 has to be set to NO at front panel. @#O400<CR> Offset of analogue range. @#S1500<CR> Analogue range. @#R255<CR> Over range counter to maximum to suppress fail signals if slope is swinging and not all echoes are detected. # Rapidly changing targets ### P42-M3A-2D-1G1-300E Check of correct bottles by sorting of height. Maximum height: 300 mm Distance sensor conveyor: 450 mm # **Setting:** @#M89<CR> @#C4<CR> Cycle time 4 ms @#O150 Offset of analogue range @#S300 Analogue range # P42-A4N-2D-1C1-220S/ 130E/ 300E P42-A4N-2D-1D1-220S/ 130E P42-A4N-2D-1E1-220S/ 130E P42-A4N-2D-1F1-220S/ 130E # P42-A4N-2D-1C1-220S/ 130E/ 300E P42-A4N-2D-1D1-220S/ 130E P42-A4N-2D-1E1-220S/ 130E P42-A4N-2D-1F1-220S/ 130E - * PROGRAMMABLE - * ANALOGUE AND SWITCHING OUTPUTS - * REPEATABILITY ± 1 MM # **Listings:** All sensors are equipped with 2 programmable PNP switching outputs. Listing includes 8 pin connector: 66195126-001 ### Sensors with RS 232 interface: Sensors with 0 to 10 V analogue output | | Analogue output | Sensing range in mm | |---------------------|-----------------|---------------------| | P42-A4N-2D-1C1-130E | 0 to 10 V | 300 to 3000 | | P42-A4N-2D-1C1-220S | 0 to 10 V | 150 to 1500 | | P42-A4N-2D-1C1-300E | 0 to 10 V | 100 to 600 | | | | | | P42-A4N-2D-1D1-130E | 4 to 20 mA | 300 to 3000 | |
P42-A4N-2D-1D1-220S | 4 to 20 mA | 150 to 1500 | | | | | #### Sensors with RS 485 interface: | | Analogue output | Sensing range in mm | |---------------------|-----------------|---------------------| | P42-A4N-2D-1E1-130E | 0 to 10 V | 300 to 3000 | | P42-A4N-2D-1E1-220S | 0 to 10 V | 150 to 1500 | | | | | | P42-A4N-2D-1F1-130E | 4 to 20 mA | 300 to 3000 | | P42-A4N-2D-1F1-220S | 4 to 20 mA | 150 to 1500 | | P42-A4N-2D-1F1-130E | 4 to 20 mA | 300 to 3000 | | 512396 | Standard connector | P66195126-001 | |--------|-----------------------------------|--------------------| | 517336 | Connector, angled with 2m cable | P55195126-001 | | 512383 | Program. scable with 1 sub min D9 | P55195101-101 | | 512377 | RS232-RS485 interface | P55000003-002 | | 512116 | Compact beam deflector | P66195116-001 | | 513552 | Beam deflector | P43192871-001 | | 513705 | Focusing beam deflector | 43192871-002 | | 512287 | Mounting clamp 30 mm | P43178389-030 | | 512414 | Mains filter | STV.2413.574.00262 | # **Technical Data Specifications** at 25° typically | | -130E | -220S | 300E | |---------------------------------|---------|----------------------|-------| | Max. Range mm | 3000 | 1500 | 900 | | Min. Range mm | 300 | 150 | 100 | | Beam angle(°) | 10 | 10 | 8 | | Carrier frequency (kHZ) | 130 | 220 | 300 | | Temperature compensation (°C) | Yes | Yes | Yes | | Interface | RS232 | /RS485 RS232/RS485 | RS232 | | Analogue output (mA) | | 4-20 | | | Repeatability (mm) | | \pm 2 \pm 0.4% | | | Response time (ms) | | 100 | | | Linearity (%) | | $\pm 0.5 / 3$ mm | | | Output adjustment | | Prog. | | | Switching outputs | | 2 NO/NC; PNP | | | Hysteresis (% of set point) | | Prog. | | | Switching frequency (Hz) | | Prog. 5-30 | | | Output circuit | | Open collector 100 m | A | | Set point adjustment | | Prog. | | | Information output | | Serial HEX/BCD | | | Alignment LED | | Yes | | | Adjustable sensitivity | | Potentiometer | | | Control inputs | | Hold/Synchronisation | | | Temperature range (°C) | | -15-+70 | | | Storage temperature range (°C) | | -25-+85 | | | Supply voltage (V) | | 19-30 | | | Current consumption without los | ad (mA) | <=25 | | | Circuit protection | | | | | Reverse polarity on supply line | | Yes | | | Voltage spikes on supply and | - | | | | Short circuited switching outp | ut | Yes | | | Sealing IP | | 65 | | | Housing | | Stainless stee | el | # **Hold/synchronisation input** If a measurement is only to take place in a certain instant, the sensor transmit and receive can be suppressed by a LOW (0V) at the hold HLD input. The last calculated distance is stored and output. During programming the HLD input should also be connected with the HLD line. If the sensor is enabled once more (HLD open or HIGH), a new output occurs after completion of a measurement cycle. ### **Synchronisation** To avoid mutual interference from several sensors, these are very simply synchronised by interconnecting the hold inputs. # **Detection cone** # Dimensions mm ### Connector Pins # Wiring ### **Pin Function** - 1 24 V = Supply - 2 0 V GND - 3 Analogue Output; 0 to 10 V - 4 Switching output 1 (PNP) - 5 Switching output 2 (PNP) - 6 Transmit inhibit;/ Synchronisation HLD - 7 RS232 RxD or RS485-B - 8 RS232 TxD or RS485-A # Wiring Diagram # PROGRAMMING THE P42-A4N-2D-1C/D/E/F1-XXXX SENSOR SERIES #### **Structure of Memory Organisation** #### **Programming instruction** During programming connect HLD (6) with GND (2). Set baudrate fix to 9600,N,8,2 (no parity bit, 8 data bits and 2 stop bits). #### **Structure of commands** Each command has the same structure: @aBp<CR> - @ Beginning of command, always identical - a Address of sensor; with '#' all sensors will be addressed - B Command - p Parameter - <CR> End of command CR=ENTER=#13 A file containing only ASCII signs can be copied with the DOS command 'COPY file.ext COM1' via the interface into the evaluation electronics. As the sensor needs time for interpretation, the file may contend only one command. Time needed between different commands is around 1 ms. A more simple way to program the sensor is the use of the programs **UDSE.EXE** or **SENDE.EXE** available as accessories. ## **List of Commands:** # Load factory setting into RAM @#I<CR> The initial setting will be written from the EEPROM into the ROM. Factory settings added to the following commands are marked with a *. #### Write actual setting into the EEPROM @#W<CR> The actual setting will be written into the EEPROM. The content of the EEPROM will be loaded into the RAM after connecting power to the sensor. Change sensor address from A to ASC(Y) @aAp<CR> p see list page 9 @aA97* ASC(97) = a #### P42-A4N-2D-1X1-XXXX Adjustment of the analogue output range @aSp<CR> 0≤p≤255 cm @aS200* Output range is the range were the analogue output is changing between 0 to 10V. An analogue output range of 200 means that within 200 cm the analogue output value changes from 0 to 10V or 4 to 20 mA. Offset of the analogue output **@aOp<CR>** 0≤p≤255 cm @aO0* Offset of the analogue sensor is the distance from the sensor head to the beginning of the analogue output range. With an offset of 50 the analogue range begins 50 cm in front of the sensor. With normal slope of the output it starts with the lowest analogue value (0 V or 4 mA) and with inverted slope with the highest analogue value (10 V or 20 mA). Switching output adjustments Set point 1 @a1p<CR> $0 \le p \le 10000 \text{ mm}$ @a500* Set point 2 @a2p<CR> $0 \le p \le 10000 \text{ mm}$ @a1000* Hysteresis adjustments of the switching outputs Hysteresis set point 1@aHp<CR> $0 \le p \le 255 \text{ mm}$ @aH10Hysteresis set point 2@aGp<CR> $0 \le p \le 255 \text{ mm}$ @aG10 **Under range adjustment** **@aUp<CR>** 0≤p≤255 @aU15* Parameter p defines the dead zone of the sensor. Echoes from targets in this zone will be ignored. Cycle time adjustment @aCp<CR> @aC32* With the cycle time also the max. detection range is determined. Following values could be selected: Command/ Cycle time/ max. range: @aC64<CR> 64ms 10m; @aC32<CR> 32ms 5m; @aC16<CR> 16ms 2.5m; @aC8<CR> 8ms 1m; @aC4<CR> 4ms 0.3m. With the 3 LSBits size of the widow for the mean value calculation is adjusted. (Size= $\pm 2^x$). Offset adjustment @**aXp<CR>** 0\leq p\leq 255 @aX238* depends on sensor There could be a difference between distance output and the real distance. 0 the offset is positive the 0 of the sensor is in front of the sensor face. <math>127 the offset is negative, the 0 of the sensor is behind the sensor face in the sensor. Negative offsets are adjusted the following way: Offset=-30 the sensor output is 30 mm too far <math>-30+256=226 = 26 (a $\times 226 < CR > 26$) Over range counter @**aRp<CR>** 0<p<256 @aR30* Parameter p is the number of cycles where no echoes are received before the output of the sensor indicates the over range. Fail echo suppression counter **@aTp<CR>** 0≤p≤255 @aT52* Upper 4 bits of parameter is the setting for the Lock-In Counter and lower 4 bits is the setting for the Lock Out Counter. Factory setting p=34, 34 HEX corresponds to 52 BCD. #### P42-A4N-2D-1X1-XXXX #### **Read out sensor setting** #### @aD<CR> The status will be returned via RS232 from the sensor. Information of consist of 8 HEX words: \$**** \$0125 \$0F61 \$341E \$00C8 \$0A14 \$01F4 \$03E8 Corresponding commands: Y X M C U A T R O S Hyst1,2 1 2 (See detailed listing next page) #### Read out of one Distance Measurement a<CR> If sensor is HOLD-mode (HLD connected with GND) this command allows to take only one read out of a distance measurement. If during this measurement fail echo supression is done, the measurement is repeated until a valid value is on the output. Instead using the sensor address a, # can also be used. #### **Mode Register** Value of parameter p is between 0 and 255. It is determined by combination of following bits. | Name. | Bit | Value | Function (1) | Function (0) | |-------|-----|-------|-----------------------------------|---------------------------| | SET | 7 | 128 | Range detection switching outputs | Normal switching function | | SAO | 6 | 64 | Serial output disabled | Serial output enabled | | HFT* | 5 | 32 | Special triggering of Echo | Normal triggering | | INV | 4 | 16 | Negative slope analogue outputs | Positive slope | | MWO | 3 | 8 | Output without mean value | With mean value | | NC2 | 2 | 4 | Switch 2 is NC | Switch 2 is NO | | NC1 | 1 | 2 | Switch 1 is NC | Switch 1 is NO | | BCD | 0 | 1 | Digital output in BCD | Digital output in HEX | ^{*} HFT bit is recommended to be set to 0 ## Example: Command for mode register: @a @aM149<CR> # P42-A4N-2D-1X1-XXXX # Read out actual sensor settings | Output | Factory | Setting | Description | |--------|---------|---------|-----------------------------| | | HEX | BCD | | | \$1A1B | | | Word 1 | | 1A1B | ** | ** | Factory setting | | \$2A2B | | | Word 2 | | 2A | 01 | 01 | Mode register | | 2B | 25 | 37 | Cycle time | | \$3A3B | | | Word 3 | | 3A | 0F | 15 | Under range setting (cm) | | 3B | 61 | 97 | Address of sensor "a" | | \$4A4C | | | Word 4 | | 4A | 34 | 52 | Factory setting | | 4C | 1E | 30 | Over range counter | | \$5A5B | | | Word 5 | | 5A | 0 | 0 | Offset of analogue range | | 5B | C8 | 200 | Analogue output range (cm) | | \$6A6B | | | Word 6 | | 6A | 0A | 10 | Hysteresis set point 1 (mm) | | 6B | 14 | 20 | Hysteresis set point 2 (mm) | | \$7AAA | | | Word 7 | | 7AAA | 1F4 | 500 | Set point 1 (cm) | | \$8AAA | | | Word 8 | | 8AAA | 3E8 | 1000 | Set point 2 (cm) | # **Examples** # Winding / unwinding control P42-A4N-2D-1C1-220S Diameter measurement of thin material. Maximum coil diameter: 1.4 m. Core diameter of coil: 0.2 m Check if coil is in place. Switch off if coil diameter is bigger than 10% of max. coil diameter. Distance sensor - centre of coil: 1.1 m 0 V at minimum coil diameter 10 V at maximum coil diameter ## **Setting:** @aM17<CR> @a11200<CR> Check if coil is in place @a2330<CR> Coil diameter bigger than 10% of max. diameter @aO400<CR> Offset of
analogue range@aS600<CR> Range of analogue output #### **Slope control** #### P42-A4N-2D-1C1-220S Stock of material before it enters pressing process. Maximum slope 1800 Minimum slope 300 Alarm if no slope; material might be stretched. Alarm if slope larger than maximum. Distance sensor - Slope = 2.2 m. #### **Setting:** @#M1<CR> @#12200<CR> Alarm ,,material might be stretched" SP1. @#H0<CR> Hysteresis set point 1 = 0 mm. @#2400<CR> Alarm slope too large. @#G10<CR> Hysteresis set point 2 = 10 mm. @#O400<CR> Offset of analogue range. @#S1500<CR> Analogue range. @#R255<CR> Over range counter to maximum to suppress fail signals if slope is swinging and not all echoes are detected. # Rapidly changing targets P42-A4N-2D-1C1-220S Check of correct bottles by sorting of height. Correct bottle height: 250 mm Maximum height: 300 mm Distance sensor conveyor: 450 mm Following switching output information desired: Bottle too high: height 255 to 350 mm Bottle too small: height 5 to 245 mm Correct bottle: height 245 to 255 mm ## **Setting:** ### Mode register: @aM217<CR> @aC4<CR> Cycle time 4 ms @aO150<CR> Offset of analogue range @aS300<CR> Analogue range @a1100<CR> Set point 1 at 100 mm @aH105<CR> Hysteresis set point 1 = 95 mm. Switching output 1 switches if top of the bottle is in range 1. @a2195<CR> Set point 2 at 195 mm. @aG250<CR> Hysteresis set point 2 = 250 mm. Switching output 2 switches if top of the bottle is in range 2. Switching output 1 Switching output 2 Bottle too high: ON OFF Bottle too small: OFF ON Bottle correct height: ON ON | INDEX | Page | |----------------------------|------| | <cr></cr> | 9 | | @alp <cr></cr> | 14 | | @a2p <cr></cr> | 14 | | @aAp <cr></cr> | 11 | | @aCp <cr></cr> | 11 | | @aCp <cr></cr> | 21 | | @aD <cr></cr> | 10 | | @aEp <cr></cr> | 20 | | @aGp <cr></cr> | 14 | | @aHp <cr></cr> | 14 | | @aI <cr></cr> | 10 | | @aMp <cr></cr> | 15 | | @aO <cr></cr> | 15 | | @aRp <cr></cr> | 17 | | @aSp <cr></cr> | 15 | | @aTp <cr></cr> | 20 | | @aUp <cr></cr> | 12 | | @aW <cr></cr> | 10 | | @aXp <cr></cr> | 17 | | 55000003-002 | 8 | | 55000005-002 | 6 | | Actual sensor settings | 25 | | Actual setting into EEPROM | 10 | | Adapter | 6 | | address of sensor | 9 | | Address of sensor | 11 | | Analogue output | 15 | | Analogue output, offset | 15 | | Analogue output, range | 15 | | ASCII table | 11 | | baud rate | 5 | | BCD - HEX conversion list | 22 | | Change sensor address | 11 | | Commands | 9 | | Commands | 10 | | Connection sensor-PC | 5 | | Conversion list BCD - HEX | 22 | | Converter RS232-RS485 | 8 | | Counter lock in | 19 | | Counter lock in | 20 | | Counter lock out | 19 | | Counter lock out | 20 | | Counter over range | 17 | | Cycle time | 11 | | Cycle time | 21 | | Dead zone | 12 | | EEPROM | 4 | | End of command | 9 | | | | | Factory setting into RAM | 10 | |-------------------------------|----| | Fail pulse suppression | 19 | | Front panel | 4 | | GW-BASIC program | 23 | | GW-BASIC program | 24 | | Hardware | 5 | | Hardware set-up | 5 | | hold' mode | 5 | | Hysteresis | 14 | | Input window | 25 | | List of commands window | 25 | | Load factory setting into RAM | 10 | | Lock in counter | 19 | | Lock in counter | 20 | | Lock out counter | 19 | | Lock out counter | 20 | | Lowest significant bit | 16 | | LSB | 16 | | Maximum distance | 12 | | Measurement principle | 11 | | Measurement window | 21 | | Memory organisation | 4 | | Mode register | 15 | | Most significant bit | 16 | | MSB | 16 | | Offset | 15 | | Offset of analogue output | 15 | | Organisation memory | 4 | | Output window | 25 | | Over range counter | 17 | | parity | 5 | | Principle of measurement | 11 | | Programming adapter | 6 | | RAM | 4 | | Range | 15 | | Range of analogue output | 15 | | Read out sensor setting | 10 | | ROM | 4 | | RS232 | 4 | | RS232-RS485 | 8 | | RS232-RS485 converter | 8 | | SENDE.EXE | 26 | | Sensor address | 11 | | Sensor offset | 17 | | Sensor setting read out | 10 | | Sensor settings into file | 26 | | Sensor settings, actual | 25 | | Sensor-PC | 5 | | Set point adjustment | 14 | | Set-up hardware | 5 | | • | | | Software Software tools Speed of window | 23
25
21 | |--|----------------| | Start of command
STATUS.TXT | 9
26 | | stop bits | 5 | | Structure of commands | 9 | | Structure of memory organisation | 4 | | Suppression of fail pulses | 19 | | Switching window | 14 | | Tools, software | 25 | | UDSD.EXE | 25 | | UDSDEMO.EXE | 25 | | UDSE.EXE | 25
25 | | UDSF.EXE | 25
12 | | Under range Under range adjustment | 12 | | Window, input | 25 | | Window, list of commands | 25 | | Window, measurement | 21 | | Window, output | 25 | | Window, speed | 21 | | Write actual setting into EEPROM | 10 | | P42-A4N-2D-1C1-130E | 42 | | P42-A4N-2D-1C1-220S | | | P42-A4N-2D-1C1-300E | | | P42-A4N-2D-1D1-130E | | | P42-A4N-2D-1D1-220S | | | P42-A4N-2D-1E1-130E | | | P42-A4N-2D-1E1-220S | | | P42-A4N-2D-1F1-130E
P42-A4N-2D-1F1-220S | | | P42-A4N-2D-1F1-220S
P42-A4N-2D-1 | | | @alp <cr></cr> | 47 | | @a2p <cr></cr> | 47 | | @aAp <cr></cr> | 46 | | @aCp <cr></cr> | 47 | | @aD <cr></cr> | 48 | | @aGp <cr></cr> | 47 | | @aHp <cr></cr> | 47 | | @aI <cr></cr> | 46 | | @aMp <cr></cr> | 48 | | @aO <cr></cr> | 47 | | @aRp <cr></cr> | 47 | | @aSp <cr></cr> | 47 | | @aTp <cr></cr> | 47 | | @aUp <cr>
@aW<cr></cr></cr> | 47
46 | | @aXp <cr></cr> | 47 | | a <cr></cr> | 48 | | u ·CIV | 70 | | | Actual setting into EEPROM | 46 | |-------------|----------------------------------|----| | | Address of sensor | 46 | | | Analogue output | 47 | | | Analogue output, offset | 47 | | | Analogue output, range | 47 | | P42-A4N-2D- | 1 | | | | Change address of sensor | 46 | | | Commands | 46 | | | Counter over range | 47 | | | Cycle time | 47 | | | Detection cone | 45 | | | Dimensions | 45 | | | Examples | 51 | | | Factory setting into RAM | 46 | | | Fail pulse suppression | 47 | | | Geometry | 50 | | | Hold/synchronising input | 44 | | | Hysteresis | 47 | | | List of commands | 46 | | | Listings | 43 | | | Load factory setting into RAM | 46 | | | Memory organisation | 46 | | | Mode register | 48 | | | Offset of analogue output | 47 | | | Over range counter | 47 | | | Programming | 46 | | | Programming instruction | 46 | | | Range | 47 | | | Range of anaolgue output | 47 | | | Read out sensor setting | 48 | | | Sensor offset | 47 | | | Sensor setting read out | 48 | | | Set point adjustment | 47 | | | Structure of commands | 46 | | | Suppression of fail pulses | 47 | | | Synchronisation | 44 | | | Technical data | 44 | | | Trigger for one distance output | 48 | | | Under range | 47 | | | Under range adjustment | 47 | | | Wiring | 45 | | | Write actual setting into EEPROM | 46 | | P42-M3A-2D-1G1-180E P42-M3A-2D-1G1-220S P42-M3A-2D-1G1-300E P42-M3A-2D-1G1 # <cr> 36 @#1p<cr> 36 @#2p<cr> 36 @#Cp<cr> 36 @#D<cr> 36 @#Ep<cr> 36 @#I+CR> 35 @#Mp<cr> 37 @#O<cr> 35 @#Rp<cr> 36 @#Up<cr> 36 @#Up<cr> 36 @#W<cr> 35 @#Xp<cr> 36 Actual setting into EEPROM 35 Address of sensor 35 Analogue output 35 Analogue output, offset 35 Analogue output, range 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter lock out 36 Counter lock out 36 Cycle time 36</cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr> | P42-M3A-2D-1G1-130E | 28 | | |--|----------------------------|----|--| | P42-M3A-2D-1G1 # <cr> 36 @#1p<cr> 36 @#2p<cr> 36 @#Cp<cr> 36 @#Cp<cr> 36 @#D<cr> 36 @#Ep<cr> 36 @#1<cr> 35 @#Mp<cr> 35 @#Mp<cr> 35 @#Tp<cr> 36 @#Up<cr> 36 @#Up<cr> 36 @#W<cr> 35 @#W<cr> 35 @#Xp<cr> 36 Actual setting into EEPROM 35 Address of sensor 35 Analogue output 35 Analogue output, offset 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36</cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr> | | | | | P42-M3A-2D-1G1 # <cr> 36 @#1p<cr> 36 @#2p<cr> 36 @#Cp<cr> 36 @#Cp<cr> 36 @#D<cr> 36 @#Ep<cr> 36 @#1<cr> 35 @#Mp<cr> 35 @#Mp<cr> 35 @#Tp<cr> 36 @#Up<cr> 36 @#Up<cr> 36 @#W<cr> 35 @#W<cr> 35 @#Xp<cr> 36 Actual setting into EEPROM 35 Address of sensor 35 Analogue output 35 Analogue output, offset 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36</cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr> | P42-M3A-2D-1G1-220S | | | | P42-M3A-2D-1G1 36 # CR> 36 @#1p <cr> 36 @#2p<cr> 36 @#CP<cr> 36 @#D<cr> 36 @#Ep<cr> 36 @#IV<cr> 35 @#MP 37 @#O<cr> 35 @#RP<cr> 36 @#SP<cr> 36 @#UP<cr> 36 @#W 35 @#XP<</cr></cr></cr></cr></cr></cr></cr></cr></cr></cr> | | | | | @#1p <cr> 36 @#2p<cr> 36 @#D<cr> 36 @#Ep<cr> 36 @#I 35 @#Mp<cr> 37 @#O<cr> 35 @#Rp<cr> 36 @#Sp<cr> 35 @#Tp<cr> 36 @#Up<cr> 36 @#W>CR> 35 @#Xp<cr> 36 Actual setting into EEPROM 35 Address of sensor 35 Analogue output 35 Analogue
output, offset 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36</cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr> | | | | | @#2p <cr> 36 @#Cp<cr> 36 @#D<cr> 36 @#Ep<cr> 36 @#I 35 @#Mp<cr> 37 @#O<cr> 35 @#Rp<cr> 36 @#Sp<cr> 36 @#Up<cr> 36 @#W<cr> 35 @#Xp<cr> 36 Actual setting into EEPROM 35 Address of sensor 35 Analogue output 35 Analogue output, offset 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36</cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr> | # <cr></cr> | 36 | | | @#Zp <cr> 36 @#Cp<cr> 36 @#D<cr> 36 @#Ep<cr> 36 @#I 35 @#Mp<cr> 37 @#O<cr> 35 @#Rp<cr> 36 @#Sp<cr> 36 @#Up<cr> 36 @#W<cr> 35 @#Xp<cr> 36 Actual setting into EEPROM 35 Address of sensor 35 Analogue output 35 Analogue output, offset 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36</cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr> | @#1p <cr></cr> | 36 | | | @#Cp <cr> 36 @#D<cr> 36 @#Ep<cr> 36 @#I<cr> 35 @#Mp<cr> 37 @#O<cr> 35 @#Rp<cr> 36 @#Sp<cr> 36 @#Up<cr> 36 @#W<cr> 35 @#Xp<cr> 36 Actual setting into EEPROM 35 Address of sensor 35 Analogue output 35 Analogue output, offset 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36</cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr> | <u>.</u> | 36 | | | @#Ep <cr> 36 @#I<cr> 35 @#Mp<cr> 37 @#CCR> 35 @#Rp<cr> 36 @#Sp<cr> 36 @#Up<cr> 36 @#W<cr> 35 @#Xp<cr> 36 Actual setting into EEPROM 35 Address of sensor 35 Analogue output 35 Analogue output, offset 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36</cr></cr></cr></cr></cr></cr></cr></cr> | <u> </u> | 36 | | | @#I 35 @#Mp 37 @#O 35 @#Rp 36 @#Sp< | @#D <cr></cr> | 36 | | | @#Mp <cr> 37 @#O<cr> 35 @#Rp<cr> 36 @#Sp<cr> 35 @#Tp<cr> 36 @#Up<cr> 36 @#W<cr> 35 @#Xp<cr> 36 Actual setting into EEPROM 35 Address of sensor 35 Analogue output 35 Analogue output, offset 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36</cr></cr></cr></cr></cr></cr></cr></cr> | @#Ep <cr></cr> | 36 | | | @#O <cr> 35 @#Rp<cr> 36 @#Sp<cr> 35 @#Tp<cr> 36 @#W<cr> 35 @#Xp<cr> 36 Actual setting into EEPROM 35 Address of sensor 35 Analogue output 35 Analogue output, offset 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36</cr></cr></cr></cr></cr></cr> | @#I <cr></cr> | 35 | | | @#Rp <cr> 36 @#Sp<cr> 35 @#Tp<cr> 36 @#Up<cr> 36 @#W<cr> 35 @#Xp<cr> 36 Actual setting into EEPROM 35 Address of sensor 35 Analogue output 35 Analogue output, offset 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36</cr></cr></cr></cr></cr></cr> | @#Mp <cr></cr> | 37 | | | @#Sp <cr> 35 @#Tp<cr> 36 @#Up<cr> 35 @#W<cr> 35 @#Xp<cr> 36 Actual setting into EEPROM 35 Address of sensor 35 Analogue output 35 Analogue output, offset 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36</cr></cr></cr></cr></cr> | @#O <cr></cr> | 35 | | | @#Tp <cr> 36 @#Up<cr> 36 @#W<cr> 35 @#Xp<cr> 36 Actual setting into EEPROM 35 Address of sensor 35 Analogue output 35 Analogue output, offset 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36</cr></cr></cr></cr> | @#Rp <cr></cr> | 36 | | | @#Up <cr> 36 @#W<cr> 35 @#Xp<cr> 36 Actual setting into EEPROM 35 Address of sensor 35 Analogue output 35 Analogue output, offset 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36</cr></cr></cr> | @#Sp <cr></cr> | 35 | | | @#W <cr>35@#Xp<cr>36Actual setting into EEPROM35Address of sensor35Analogue output35Analogue output, offset35Analogue output, range35Analogue outputs31Commands35Counter lock in36Counter lock out36Counter lock out36Counter over range36Cycle time36</cr></cr> | @#Tp <cr></cr> | 36 | | | @#Xp <cr>36Actual setting into EEPROM35Address of sensor35Analogue output35Analogue output, offset35Analogue output, range35Analogue outputs31Commands35Counter lock in36Counter lock out36Counter lock out36Counter over range36Cycle time36</cr> | @#Up <cr></cr> | 36 | | | Actual setting into EEPROM Address of sensor Analogue output Analogue output, offset Analogue output, range Analogue outputs Analogue outputs Commands Counter lock in Counter lock out Counter lock out Counter lock out Counter over range Cycle time 35 Analogue outputs 36 Analogue outputs 37 Analogue outputs 38 Analogue outputs 39 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time | @#W <cr></cr> | 35 | | | Address of sensor Analogue output Analogue output, offset Analogue output, range Analogue outputs Analogue outputs Commands Counter lock in Counter lock out Counter lock out Counter lock out Counter over range Cycle time 35 35 36 36 36 36 36 36 36 36 | @#Xp <cr></cr> | 36 | | | Analogue output, offset 35 Analogue output, range 35 Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 35 | Actual setting into EEPROM | 35 | | | Analogue output, offset Analogue output, range Analogue outputs Analogue outputs Commands Counter lock in Counter lock in Counter lock out 36 Counter over range Cycle time 35 35 36 36 36 36 36 36 36 36 | Address of sensor | 35 | | | Analogue output, range Analogue outputs 31 Commands 35 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36 | Analogue output | 35 | | | Analogue outputs Commands Counter lock in Counter lock in Counter lock out Counter lock out Counter lock out Counter lock out Counter over range Cycle time 31 32 33 36 36 36 36 36 36 36 36 | Analogue output, offset | 35 | | | Commands 35 Counter lock in 36 Counter lock in 36 Counter lock out 36 Counter lock out 36 Counter over range 36 Cycle time 36 | Analogue output, range | 35 | | | Counter lock in36Counter lock in36Counter lock out36Counter lock out36Counter over range36Cycle time36 | Analogue outputs | 31 | | | Counter lock in36Counter lock out36Counter lock out36Counter over range36Cycle time36 | Commands | 35 | | | Counter lock out36Counter lock out36Counter over range36Cycle time36 | Counter lock in | 36 | | | Counter lock out 36 Counter over range 36 Cycle time 36 | Counter lock in | 36 | | | Counter over range 36 Cycle time 36 | Counter lock out | 36 | | | Cycle time 36 | Counter lock out | 36 | | | · | Counter over range | 36 | | | Evaluation units 30 | Cycle time | 36 | | | | Evaluation units | 30 | | | Examples | 39 | |---|----| | Factory setting into RAM | 35 | | Fail pulse suppression | 36 | | Function switches | 30 | | Geometry | 38 | | Hold/synchronising input | 31 | | List of commands | 35 | | Listings | 29 | | Load factory setting into RAM | 35 | | Lock in counter | 36 | | Lock in counter | 36 | | P42-M3A-2D-1G1 | | | Lock out counter | 36 | | Lock out counter | 36 | | Memory organisation | 35 | | Mode register | 37 | | Multiplex digital output | 31 | | Multiplex digital output, time diagram | 33 | | Offset of analogue output | 35 | | Over range counter | 36 | | Programming | 35 | | Programming instruction | 35 | | Range | 35 | | Range of anaolgue output | 35 | | Read out sensor setting | 36 | | RS 232 | 31 | | Sensor heads | 33 | | Sensor offset | 36 | | Sensor setting read out | 36 | | Serial interface | 31 | | Set point adjustment | 31 | | Set point adjustment | 36 | | Structure of commands | 35 | | Suppression of fail pulses | 36 | | Switching outputs | 31 | | Technical data | 31 | | Time digram of multiplex digital output | 33 | | Trigger for one distance output | 36 | | Under range | 36 | | Under range adjustment | 36 | | Wiring | 32 | | Write actual setting into EEPROM | 35 | # Cross-reference list PiL (old) / Honeywell | Historic nomenclature * | Current nomenclature | Order No. | |-------------------------|---------------------------------|-----------| | P42-A4Y-2D-1D1-S273 | P42-150-M30-I2P-RS232 | 515214 | | P42-A4Y-2D-1E1-S273 | P42-150-M30-U2P-RS485 | 515215 | | P42-A4N-2D-1F1-220S | P42-150-M30-ST-I2P-RS485-C723 | 512217 | | P42-A4N-2D-1F1-180E | P42-200-M30-ST-I2P-RS485-C723 | 516273 | | P42-A4N-2D-1F1-130E | P42-300-M30-ST-I2P-RS485-C723 | 512216 | | P42-A4N-2D-1E1-220S | P42-150-M30-ST-U2P-RS485-C723 | 512214 | | P42-A4N-2D-1E1-130E | P42-300-M30-ST-U2P-RS485-C723 | 512213 | | P42-A4N-2D-1D2-130E | P42-300-M30-ST-I2N-RS232-C723 | 514704 | | P42-A4N-2D-1D1-300EPC | P42-60-M30-STc-I2P-RS232-C723 | 516505 | | P42-A4N-2D-1D1-300E | P42-60-M30-ST-I2P-RS232-C723 | 512212 | | P42-A4N-2D-1D1-220S | P42-150-M30-ST-I2P-RS232-C723 | 512211 | | P42-A4N-2D-1D1-180E | P42-200-M30-ST-I2P-RS232-C723 | 512210 | | P42-A4N-2D-1D1-130E | P42-300-M30-ST-I2P-RS232-C723 | 512209 | | P42-A4N-2D-1C1-300E | P42-60-M30-ST-U2P-RS232-C723 | 512208 | | P42-A4N-2D-1C1-220S | P42-150-M30-ST-U2P-RS232-C723 | 512207 | | P42-A4N-2D-1C1-180E | P42-200-M30-ST-U2P-RS232-C723 | 512206 | | P42-A4N-2D-1C1-130E | P42-300-M30-ST-U2P-RS232-C723 | 512205 | | P42-A4Y-2D-1F1-S273 | P42-150-M30-I2P-RS485-2m | 515216 | | P42-M0A-2D-1G1-65E | P42-800-BOX-UI2P-RS232 | 513828 | |
P42-M0A-2D-1G1-300E | P42-90-BOX-UI2P-RS232 | 512254 | | P42-M0A-2D-1G1-200E | P42-150-BOX-UI2P-RS232 | 513923 | | P42-M0A-2D-1G1-180E | P42-250-BOX-UI2P-RS232 | 512252 | | P42-M0A-2D-1G1-130E | P42-400-BOX-UI2P-RS232 | 512250 | | P42-M0A-2D-1G1 | P42-BOX-UI2P-RS232 | 512253 | | P42-M0A-2D-1B1-220S | P42-150-BOX-RS232 | 512248 | | P42-M3A-2D-1G1-M96-M | P42-150-SET-M30-UI2P-RS232-M96 | 516793 | | P42-M3A-2D-1G1-65E | P42-800-SET-Q40-UI2P-RS232 | 513943 | | P42-M3A-2D-1G1-300E | P42-90-SET-M30-UI2P-RS232 | 511922 | | P42-M3A-2D-1G1-220S | P42-150-SET-M30-UI2P-RS232 | 512262 | | P42-M3A-2D-1G1-200E | P42-150-SET-M30-UI2P-RS232-200E | 516788 | | P42-M3A-2D-1G1-180E | P42-250-SET-M30-UI2P-RS232 | 512261 | | P42-M3A-2D-1G1-130E | P42-400-SET-M30-UI2P-RS232 | 512259 | | P42-T4N-AD-1EF2-130E | P42-350-M30-PBT-UI2N-RS485-C723 | 515545 | | P42-T4N-AD-1EF1-130E | P42-130-M30-PBT-UI2P-RS485-C723 | 515544 | | P42-T4N-AD-1CD2-220E | P42-150-M30-PBT-UI2N-RS232-C723 | 515556 | | P42-T4N-AD-1CD2-130E | P42-350-M30-PBT-UI2N-RS232-C723 | 515542 | | P42-T4N-2D-1D1-300E | P42-60-M30-PBT-I2P-RS232-C723 | 515657 | | P42-T4N-AD-1EF2-220E | P42-150-M30-PBT-UI2N-RS485-C723 | 515558 | | P42-T4N-AD-1EF2-180E | P42-200-M30-PBT-UI2N-RS485-C723 | 515565 | | P42-T4N-AD-1EF1-220E | P42-160-M30-PBT-UI2P-RS485-C723 | 515557 | | P42-T4N-AD-1EF1-180E | P42-200-M30-PBT-UI2P-RS485-C723 | 515564 | | P42-T4N-AD-1CD2-180E | P42-200-M30-PBT-UI2N-RS232-C723 | 515563 | | P42-T4N-AD-1CD2-130E | P42-350-M30-PBT-UI2N-RS232-C723 | 517261 | | P42-T4N-AD-1CD1-220E | P42-160-M30-PBT-UI2P-RS232-C723 | 515637 | | P42-T4N-AD-1CD1-180E | P42-200-M30-PBT-UI2P-RS232-C723 | 515568 | | P42-T4N-AD-1CD1-130E | P42-350-M30-PBT-UI2P-RS232-C723 | 516334 | # Cross-reference list PiL (old) / Honeywell | P42-T4N-2D-1F1-200E | P42-150-M30-PBT-I2P-RS485-C723 | 513776 | |-----------------------|--------------------------------|--------| | P42-T4N-2D-1F1-130E | P42-350-M30-PBT-I2P-RS485-C723 | 516538 | | P42-T4N-2D-1E1-200E | P42-150-M30-PBT-U2P-RS485-C723 | 513775 | | P42-T4N-2D-1E1-130E | P42-350-M30-PBT-U2P-RS485-C723 | 513695 | | P42-T4N-2D-1D1-200E | P42-150-M30-PBT-I2P-RS232-C723 | 512279 | | P42-T4N-2D-1D1-180E | P42-200-M30-PBT-I2P-RS232-C723 | 514213 | | P42-T4N-2D-1D1-130E | P42-350-M30-PBT-I2P-RS232-C723 | 513972 | | P42-T4N-2D-1C1-200EPD | P42-150-M30-PBT-U2P-RS232-C723 | 515367 | | P42-T4N-2D-1C1-200E | P42-150-M30-PBT-U2P-RS232-C723 | 513574 | | P42-T4N-2D-1C1-180E | P42-200-M30-PBT-U2P-RS232-C723 | 513859 | | P42-T4N-2D-1C1-130E | P42-350-M30-PBT-U2P-RS232-C723 | 513784 | ^{*} For Honeywell reference replace "P" with "9".